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Chapter One 

Viscous Flow in Ducts 
 

1.1. TURBULENT FLOW IN PIPES 

Most flows encountered in engineering practice are turbulent, and thus it is 

important to understand how turbulence affects wall shear stress. However, 

turbulent flow is a complex mechanism dominated by fluctuations, and despite 

tremendous amounts of work done in this area by researchers, the theory of 

turbulent flow remains largely undeveloped. Therefore, we must rely on 

experiments and the empirical or semi-empirical correlations developed for various 

situations. 

Turbulent flow is characterized by random and a rapid fluctuation of swirling 

regions of fluid, called eddies, throughout the flow. These fluctuations provide an 

additional mechanism for momentum and energy transfer. In laminar flow, fluid 

particles flow in an orderly manner along pathlines, and momentum and energy are 

transferred across streamlines by molecular diffusion. In turbulent flow, the 

swirling eddies transport mass, momentum, and energy to other regions of flow 

much more rapidly than molecular diffusion, greatly enhancing mass, momentum, 

and heat transfer. As a result, turbulent flow is associated with much higher values 

of friction, heat transfer, and mass transfer coefficients (see Figure 1.1). 

 

 

 

 

 

 

Figure 1.1: The intense mixing in 

turbulent flow brings fluid particles at 

different momentums into close contact 

and thus enhances momentum transfer. 
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Even when the average flow is steady, the eddy motion in turbulent flow causes 

significant fluctuations in the values of velocity, temperature, pressure, and even 

density (in compressible flow). Figure 1.2 shows the variation of the instantaneous 

velocity component u with time at a specified location, as can be measured with a 

hot-wire anemometer probe or other sensitive device. We observe that the 

instantaneous values of the velocity fluctuate about an average value, which 

suggests that the velocity can be expressed as the sum of an average value  ̅ and a 

fluctuating component   , 

   ̅                                                     …….1.1 

 

 

 

 

 

 

 

 

 

 

1.2. Turbulent Shear Stress 

 

It is convenient to think of the turbulent shear stress as consisting of two parts: the 

laminar component, which accounts for the friction between layers in the flow 

direction (expressed as        
  ̅

  
), and the turbulent component, which 

accounts for the friction between the fluctuating fluid particles and the fluid body 

Figure 1.2: Fluctuations of the velocity component u with time at a specified location in 

turbulent flow. 
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(denoted as      ) and is related to the fluctuation components of velocity). Then 

the total shear stress in turbulent flow can be expressed as 

                                      ……1.2 

The typical average velocity profile and relative magnitudes of laminar and 

turbulent components of shear stress for turbulent flow in a pipe are given in 

Figure 3.1. 

 

 

 

 

 

 

 

 

In many of the simpler turbulence models, turbulent shear stress is expressed in an 

analogous manner as suggested by the French mathematician Joseph Boussinesq 

(1842–1929) in 1877 as 

         
  ̅

  
                or                    

  ̅

  
                ……1.3 

where μt is the eddy viscosity or turbulent viscosity, which accounts for momentum 

transport by turbulent eddies. Then the total shear stress can be expressed 

conveniently as 

                   
  ̅

  
   

  ̅

  
       

  ̅

  
              ……1.4 

              
  ̅

  
                                                               ……1.5 

where    
  

 ⁄  is the kinematic eddy viscosity or kinematic turbulent viscosity 

(also called the eddy diffusivity of momentum). The concept of eddy viscosity is 

Figure 1.3: The velocity profile and the variation of shear stress with radial distance for 

turbulent flow in a pipe. 
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very appealing, but it is of no practical use unless its value can be determined. In 

other words, eddy viscosity must be modeled as a function of the average flow 

variables; we call this eddy viscosity closure. For example, in the early 1900s, the 

German engineer L. Prandtl introduced the concept of mixing length (lm), which is 

related to the average size of the eddies that are primarily responsible for mixing, 

and expressed the turbulent shear stress as 

         
  ̅

  
    

 (
  ̅

  
)
 
                                             ………1.6 

 

1.3. Turbulent Velocity Profile 

 

Unlike laminar flow, the expressions for the velocity profile in a turbulent flow are 

based on both analysis and measurements, and thus they are semi-empirical in 

nature with constants determined from experimental data. Consider fully-

developed turbulent flow in a pipe, and let u denote the time-averaged velocity in 

the axial direction. 

Typical velocity profiles for fully developed laminar and turbulent flows are given 

in Figure 1.4. Note that the velocity profile is parabolic in laminar flow but is much 

fuller in turbulent flow, with a sharp drop near the pipe wall. Turbulent flow along 

a wall can be considered to consist of four regions, characterized by the distance 

from the wall. The very thin layer next to the wall where viscous effects are 

dominant is the viscous (or laminar or linear or wall) sublayer. The velocity 

profile in this layer is very nearly linear, and the flow is streamlined. Next to the 

viscous sublayer is the buffer layer, in which turbulent effects are becoming 

significant, but the flow is still dominated by viscous effects. Above the buffer 

layer is the overlap (or transition) layer, also called the inertial sublayer, in which 

the turbulent effects are much more significant, but still not dominant. Above that 
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is the outer (or turbulent) layer in the remaining part of the flow in which 

turbulent effects dominate over molecular diffusion (viscous) effects. 

 

 

 

 

 

 

 

 

 

 

Then the velocity gradient in the viscous sublayer remains nearly constant at 

du/dy= u/y, and the wall shear stress can be expressed as 

                                                                                        …..1.7 

 

where y is the distance from the wall (note that y= R - r for a circular pipe). The 

quantity τw/ρ is frequently encountered in the analysis of turbulent velocity 

profiles. The square root of τw/ρ has the dimensions of velocity, and thus it is 

convenient to view it as a fictitious velocity called the friction velocity expressed 

as    √
  

 ⁄ . Substituting this into Eq. 1.7, the velocity profile in the viscous 

sublayer can be expressed in dimensionless form as 

Viscous sublayer:                
 

  
 

   

 
  

Figure 1.4: The velocity profile in fully developed pipe flow is parabolic in laminar 

flow, but much fuller in turbulent flow. 
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This equation is known as the law of the wall, and it is found to satisfactorily 

correlate with experimental data for smooth surfaces for 0 ≤ 
   

 
 ≤5. Therefore, the 

thickness of the viscous sublayer is roughly 

Thickness of viscous sublayer:          

 

where uϭ is the flow velocity at the edge of the viscous sublayer, which is closely 

related to the average velocity in a pipe. The quantity 
 

  
 has dimensions of length 

and is called the viscous length; it is used to nondimensionalize the distance y from 

the surface. In boundary layer analysis, it is convenient to work with 

nondimensionalized distance and nondimensionalized velocity defined as 

Nondimensionalized variables:      

 

Note that the friction velocity u* is used to nondimensionalize both y and u, and y
+
 

resembles the Reynolds number expression. 

Dimensional analysis indicates and the experiments confirm that the velocity in the 

overlap layer is proportional to the logarithm of distance, and the velocity profile 

can be expressed as 

The logarithmic law:                                             ……1.8 

 

where k and B are constants whose values are determined experimentally to be 

about 0.40 and 5.0, respectively. Equation 1.8 is known as the logarithmic law. 

Substituting the values of the constants, the velocity profile is determined to be 

 

Overlap layer:    
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A good approximation for the outer turbulent layer of pipe flow can be obtained by 

evaluating the constant B in Eq. 1.8 from the requirement that maximum velocity 

in a pipe occurs at the centerline where r= 0. Solving for B from Eq. 1.8 by setting 

y = R & r = R and u = umax, and substituting it back into Eq. 1.8 together with k = 

0.4 gives 

Outer turbulent layer:      

 

The deviation of velocity from the centerline value umax - u is called the velocity 

defect, and the above equation is called the velocity defect law. 

 

1.4. The Moody Chart 

The friction factor in fully developed turbulent pipe flow depends on the Reynolds 

number and the relative roughness (ε/D), which is the ratio of the mean height of 

roughness of the pipe, to the pipe diameter. The functional form of this dependence 

cannot be obtained from a theoretical analysis, and all available results are 

obtained from painstaking experiments using artificially roughened surfaces 

(usually by gluing sand grains of a known size on the inner surfaces of the pipes). 

Most such experiments were conducted by Prandtl’s student J. Nikuradse in 1933, 

followed by the works of others. The friction factor was calculated from the 

measurements of the flow rate and the pressure drop. 

The experimental results obtained are presented in tabular, graphical, and 

functional forms obtained by curve-fitting experimental data. In 1939, Cyril F. 

Colebrook (1910–1997) combined the available data for transition and turbulent 

flow in smooth as well as rough pipes into the following implicit relation known as 

the Colebrook equation: 

 

Turbulent flow:                                                                        …..1.9 
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We note that the logarithm in Eq. 1.9 is a base 10 rather than a natural logarithm. 

In 1942, the American engineer Hunter Rouse (1906–1996) verified Colebrook’s 

equation and produced a graphical plot of f as a function of Re and the product 

  √ . He also presented the laminar flow relation and a table of commercial pipe 

roughness. Two years later, Lewis F. Moody (1880–1953) redrew Rouse’s diagram 

into the form commonly used today. The now famous Moody chart is given in the 

appendix as Figure 1.5. It presents the Darcy friction factor for pipe flow as a 

function of the Reynolds number and ε/D over a wide range. It is probably one of 

the most widely accepted and used charts in engineering. Although it is developed 

for circular pipes, it can also be used for noncircular pipes by replacing the 

diameter by the hydraulic diameter. An approximate explicit relation for f was 

given by S. E. Haaland in 1983 as 

 

                                                                              …….. 1.10 

 

The results obtained from this relation are within 2% of those obtained from the 

Colebrook equation. Equivalent roughness values for some commercial pipes are 

given in Table 1.1 as well as on the Moody chart. 

 

 

 

 

 

 

 

 

 

Table 1.1: Equivalent roughness values 

for new commercial pipes. 
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We make the following observations from the Moody chart: 

 For laminar flow, the friction factor decreases with increasing Reynolds 

number, and it is independent of surface roughness. 

 The friction factor is a minimum for a smooth pipe (but still not zero 

because of the no-slip condition) and increases with roughness. The 

Colebrook equation in this case (ε = 0) reduces to the Prandtl equation 

expressed as    

 The transition region from the laminar to turbulent regime (2300 < Re < 

4000) is indicated by the shaded area in the Moody chart. The flow in this 

region may be laminar or turbulent, depending on flow disturbances, or it 

may alternate between laminar and turbulent, and thus the friction factor 

may also alternate between the values for laminar and turbulent flow. The 

data in this range are the least reliable. At small relative roughnesses, the 

friction factor increases in the transition region and approaches the value for 

smooth pipes. 

 At very large Reynolds numbers (to the right of the dashed line on the chart) 

the friction factor curves corresponding to specified relative roughness 

curves are nearly horizontal, and thus the friction factors are independent of 

the Reynolds number. The flow in that region is called fully rough turbulent 

flow or just fully rough flow because the thickness of the viscous sublayer 

decreases with increasing Reynolds number, and it becomes so thin that it is 

negligibly small compared to the surface roughness height. The viscous 

effects in this case are produced in the main flow primarily by the protruding 

roughness elements, and the contribution of the laminar sublayer is 

negligible. The Colebrook equation in the fully rough zone (Re → ∞) 

reduces to the von Kármán equation expressed as which is explicit in f.  
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Figure 1.5: The Moody chart for the friction factor for fully developed flow. 

Figure 1.6: At very large Reynolds numbers, the friction factor curves on the Moody chart are 

nearly horizontal, and thus the friction factors are independent of the Reynolds number. 
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1.5. Types of Fluid Flow Problems 

In the design and analysis of piping systems that involve the use of the Moody 

chart (or the Colebrook equation), we usually encounter three types of problems 

(the fluid and the roughness of the pipe are assumed to be specified in all cases). 

1. Determining the pressure drop (or head loss) when the pipe length and 

diameter are given for a specified flow rate (or velocity) 

2. Determining the flow rate when the pipe length and diameter are given for a 

specified pressure drop (or head loss) 

3. Determining the pipe diameter when the pipe length and flow rate are given for 

a specified pressure drop (or head loss) 

Problems of the first type are straightforward and can be solved directly by using 

the Moody chart. Problems of the second type and third type are commonly 

encountered in engineering design (in the selection of pipe diameter, for example, 

that minimizes the sum of the construction and pumping costs), but the use of the 

Moody chart with such problems requires an iterative approach unless an equation 

solver is used. 

In problems of the second type, the diameter is given but the flow rate is unknown. 

A good guess for the friction factor in that case is obtained from the completely 

turbulent flow region for the given roughness. This is true for large Reynolds 

numbers, which is often the case in practice. Once the flow rate is obtained, the 

friction factor can be corrected using the Moody chart or the Colebrook equation, 

and the process is repeated until the solution converges. (Typically only a few 

iterations are required for convergence to three or four digits of precision.) 

In problems of the third type, the diameter is not known and thus the Reynolds 

number and the relative roughness cannot be calculated. Therefore, we start 

calculations by assuming a pipe diameter. The pressure drop calculated for the 

assumed diameter is then compared to the specified pressure drop, and calculations 

are repeated with another pipe diameter in an iterative fashion until convergence. 
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To avoid tedious iterations in head loss, flow rate, and diameter calculations, 

Swamee and Jain proposed the following explicit relations in 1976 that are 

accurate to within 2% of the Moody chart:     

 

 

 

 

 

 

 

Examples: 

Example 1: 

Water (ρ= 62.36 lbm/ft
3
 and μ= 7.536×10

-4
 lbm/ft·s) is flowing steadily in a 2 in 

diameter horizontal pipe made of stainless steel at a rate of 0.2 ft
3
/s (see Figure 

below). Determine the pressure drop, the head loss, and the required pumping 

power input for flow over a 200 ft long section of the pipe.    

Solution: We recognize this as a problem of 

the first type, since flow rate, pipe length, and 

pipe diameter are known. First we calculate 

the average velocity and the Reynolds number 

to determine the flow regime:      

 

 

 

 

which is greater than 4000. Therefore, the flow is turbulent. The relative roughness 

of the pipe is calculated using Table1.1.          
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The friction factor corresponding to this relative roughness and the Reynolds 

number can simply be determined from the Moody chart. To avoid any reading 

error, we determine f from the Colebrook equation:    

 

    

Using an equation solver or an iterative scheme, the friction factor is determined to 

be f = 0.0174. Then the pressure drop (which is equivalent to pressure loss in this 

case), head loss, and the required power input become 

 

 

 

 

 

      

 

 

Example 2: 

Heated air at 35°C is to be transported in a 150 m long circular plastic duct at a rate 

of 0.35 m
3
/s (see Figure below). If the head loss in the pipe is not to exceed 20 m, 

determine the minimum diameter of the duct. 

Solution: 

The density, dynamic viscosity and kinematic viscosity of air at 35°C are ρ = 1.145 

kg/m
3
, μ= 1.895×10

-5
 kg/m·s, and  = 1.655×10

-5
 m

2
/s. 

the friction factor, and the head loss 

relations can be expressed as (D is in m, V 

is in m/s, and Re and f are dimensionless) 
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The roughness is approximately zero for a plastic pipe (Table 1.1). Therefore, this 

is a set of four equations in four unknowns, and solving them with an equation 

solver such as EES gives 

 

Therefore, the diameter of the duct should be more than 26.7 cm if the head loss is 

not to exceed 20 m. Note that Re > 4000, and thus the turbulent flow assumption is 

verified. 

The diameter can also be determined directly from the third Swamee–Jain formula 

to be 

 

 

 

 

 

Example: 

Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm 

diameter copper tube at a rate of 0.15 kg/s. Determine the pressure drop, the head 

loss, and the pumping power required to overcome the frictional losses in the tube. 

Solution: 
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The density and dynamic viscosity of liquid ammonia at -20°C are ρ= 665.1 kg/m
3
 

and μ= 2.361×10
-4

 kg/m.s. The roughness of copper tubing is 1.5×10
-6

 m. 

First we calculate the average velocity and the Reynolds number to determine the 

flow regime: 

 

     

 

 

which is greater than Re > 4000. Therefore, the flow is turbulent. The relative 

roughness of the pipe is 

 

    

The friction factor can be determined from the Moody chart, but to avoid the 

reading error, we determine it from the Colebrook equation using an equation 

solver (or an iterative scheme),     

 

 

It gives f = 0.01819. Then the pressure drop, the head loss, and the useful pumping 

power required become 
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Chapter Three 

Fluid Kinematics 

 

1.1 FUNDAMENTALS OF FLOW VISUALIZATION 

While quantitative study of fluid dynamics requires advanced mathematics, much 

can be learned from flow visualization—the visual examination of flow field 

features. Flow visualization is useful not only in physical experiments (Fig. 3–1), 

but in numerical solutions as well [computational fluid dynamics (CFD)]. In fact, 

the very first thing an engineer using CFD does after obtaining a numerical 

solution is simulate some form of flow visualization, so that he or she can see the 

―whole picture‖ rather than merely a list of numbers and quantitative data. Why? 

Because the human mind is designed to rapidly process an incredible amount of 

visual information; as they say, a picture is worth a thousand words. There are 

many types of flow patterns that can be visualized, both physically 

(experimentally) and/or computationally. 

 

 

 

 

 

 

 

 

 

 Figure 3.1: Spinning baseball. 
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1.2 Streamlines 

A streamline is a curve that is everywhere tangent to the instantaneous local 

velocity vector. 

Streamlines are useful as indicators of the instantaneous direction of fluid motion 

throughout the flow field. For example, regions of recirculating flow and 

separation of a fluid off of a solid wall are easily identified by the streamline 

pattern. Streamlines cannot be directly observed experimentally except in steady 

flow fields, in which they are coincident with pathlines and streaklines, to be 

discussed next. Mathematically, however, we can write a simple expression for a 

streamline based on its definition. 

Consider an infinitesimal arc length   ⃗     ⃗      ⃗      ⃗⃗ along streamline;   ⃗ 

must be parallel to the local velocity vector  ⃗⃗    ⃗     ⃗     ⃗⃗ by definition of 

the streamline. By simple geometric arguments using similar triangles, we know 

that the components of   ⃗ must be proportional to those of  ⃗⃗ (Fig. 3–2). Hence, 

Equation for a Streamline: 

 
  

 
  

  

 
  

  

 
 

  

 
                                                             (3–1) 

 

     

 

 

 

 

 

 

 

 

Figure 3.2: Two-dimensional flow in the xy-plane, arc length 𝑑𝑟= (dx, dy) along a 

streamline is everywhere tangent to the local instantaneous velocity vector 𝑉⃗⃗ = (u, v). 
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where    is the magnitude of   ⃗ and V is the speed, the magnitude of  ⃗⃗. Equation 

3–1 is illustrated in two dimensions for simplicity in Fig. 3–2. For a known 

velocity field, we can integrate Eq. 3–1to obtain equations for the streamlines. In 

two dimensions, (x, y), (u, v), the following differential equation is obtained: 

Streamline in the xy-plane:  
  

  
                     

 

 
                         (3–2) 

In some simple cases, Eq. 3–2 may be solvable analytically; in the general case, it 

must be solved numerically. In either case, an arbitrary constant of integration 

appears, and the family of curves that satisfy Eq. 3–2 represents streamlines of the 

flow field. 
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1.3 Pathlines 

A pathline is the actual path traveled by an individual fluid particle over some time 

period. 

Pathlines are the easiest of the flow patterns to understand. A pathline is a 

Lagrangian concept in that we simply follow the path of an individual fluid particle 

as it moves around in the flow field (Fig. 3–3). Thus, a pathline is the same as the 

fluid particle’s material position vector (xparticle(t), yparticle(t), zparticle(t)), traced out 

over some finite time interval. In a physical experiment, you can imagine a tracer 

fluid particle that is marked somehow—either by color or brightness—such that it 

is easily distinguishable from surrounding fluid particles. Now imagine a camera 

with the shutter open for a certain time period, tstart > t >tend, in which the particle’s 

path is recorded; the resulting curve is called a pathline. An intriguing example is 

shown in Fig. 3–3 for the case of waves moving along the surface of water in a 

tank. Neutrally buoyant white tracer particles are suspended in the water, and a 

time-exposure photograph is taken for one complete wave period. The result is 

pathlines that are elliptical in shape, showing that fluid particles bob up and down 

and forward and backward, but return to their original position upon completion of 

one wave period; there is no net forward motion. You may have experienced 

something similar while bobbing up and down on ocean waves. 

Figure 3.3:  A pathline is formed by following the actual path of a fluid particle. 
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Chapter Three 

Mass, Bernoulli, and Energy Equations 

 

1.1 INTRODUCTION 

You are already familiar with numerous conservation laws such as the laws of 

conservation of mass, conservation of energy, and conservation of momentum. 

Historically, the conservation laws are first applied to a fixed quantity of matter 

called a closed system or just a system, and then extended to regions in space 

called control volumes. The conservation relations are also called balance 

equations since any conserved quantity must balance during a process. We now 

give a brief description of the conservation of mass, momentum, and energy 

relations. 

 

1.2 Conservation of Mass Principle 

The conservation of mass principle for a control volume can be expressed as: The 

net mass transfer to or from a control volume during a time interval ∆t is equal to 

the net change (increase or decrease) in the total mass within the control volume 

during ∆t. That is, 

 

 

 

Or,                      (kg)                                                                      (3.1) 

It can also be expressed in rate form as, 

 ̇    ̇                 (kg/s)                                                                      (3.2)                            
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where  ̇   and m ̇   out are the total rates of mass flow into and out of the 

control volume, and         is the rate of change of mass within the control 

volume boundaries. Equations 3–1 and 3–2 are often referred to as the mass 

balance and are applicable to any control volume undergoing any kind of process. 

Consider a control volume of arbitrary shape, as shown in Figure 3–1. The mass of 

a differential volume dV within the control volume is dm= ρdV. The total mass 

within the control volume at any instant in time t is determined by integration to be 

Total mass within the CV: 

     ∫     
  

        (3.3) 

Then the time rate of change of the 

amount of mass within the control 

volume can be expressed as 

Rate of change of mass within the CV: 

    

  
  

 

  
∫     
  

        (3.4) 

 

Using the definition of mass flow 

rate as, 

 

  
∫     
  

 ∑  ̇   ∑  ̇         or     
    

  
 ∑  ̇   ∑  ̇               (3.5) 

 

There is considerable flexibility in the selection of a control volume when solving 

a problem. Several control volume choices may be correct, but some are more 

convenient to work with. A control volume should not introduce any unnecessary 

complications. The proper choice of a control volume can make the solution of a 

seemingly complicated problem rather easy. A simple rule in selecting a control 

volume is to make the control surface normal to flow at all locations where it 

crosses fluid flow, whenever possible. 

Figure 3.1: The differential control volume dV and 

the differential control surface dA used in the 

derivation of the conservation of mass relation. 
 



 Mass, Bernoulli, and Energy Equations                                        Chapter: Three 

4 

 

1.3 Mass Balance for Steady-Flow Processes 

During a steady-flow process, the total amount of mass contained within a control 

volume does not change with time (mCV= constant). Then the conservation of mass 

principle requires that the total amount of mass entering a control volume equal the 

total amount of mass leaving it. For a garden hose nozzle in steady operation, for 

example, the amount of water entering the nozzle per unit time is equal to the 

amount of water leaving it per unit time. When dealing with steady-flow processes, 

we are not interested in the amount of mass that flows in or out of a device over 

time; instead, we are interested in the amount of mass flowing per unit time, that is, 

the mass flow rate  ̇. The conservation of mass principle for a general steady-flow 

system with multiple inlets and outlets can be expressed in rate form as (Figure 

3.2) 

Steady flow:  ∑  ̇   ∑  ̇        (kg/s)                                                             (3.6) 

It states that the total rate of mass entering a control volume is equal to the total 

rate of mass leaving it. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.2: Conservation of mass principle for a two-inlet–one-

outlet steady-flow system. 

 



 Mass, Bernoulli, and Energy Equations                                        Chapter: Three 

5 

 

Many engineering devices such as nozzles, diffusers, turbines, compressors, and 

pumps involve a single stream (only one inlet and one outlet). For these cases, we 

denote the inlet state by the subscript 1 and the outlet state by the subscript 2, and 

drop the summation signs. Then Eq. 3.6 reduces, for single-stream steady-flow 

systems, to 

Steady flow (single stream):     ̇   ̇       ⇒                                (3.7) 

Special Case: Incompressible Flow 

The conservation of mass relations can be simplified even further when the fluid is 

incompressible, which is usually the case for liquids. Canceling the density from 

both sides of the general steady-flow relation gives 

Steady, incompressible flow:   ∑  ̇   ∑  ̇        (m
3
/s)                                (3.8) 

For single-stream steady-flow systems it becomes 

Steady, incompressible flow (single stream):  ̇   ̇   ⇒                  (3.9) 

It should always be kept in mind that there is no such thing as a “conservation of 

volume” principle. Therefore, the volume flow rates into and out of a steady-flow 

device may be different. The volume flow rate at the outlet of an air compressor is 

much less than that at the inlet even though the mass flow rate of air through the 

compressor is constant (Figure 3.3). This is due to the higher density of air at the 

compressor exit. For steady flow of liquids, however, the volume flow rates, as 

well as the mass flow rates, remain constant since liquids are essentially 

incompressible (constant-density) substances. Water flow through the nozzle of a 

garden hose is an example of the latter case. 

 

 

 

 

 

Figure 3.3: During a steady-flow process, volume flow rates are not 
necessarily conserved although mass flow rates are. 
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Example 3–1: A garden hose attached with a nozzle is used to fill a 10-gal bucket. 

The inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle exit. 

If it takes 50 s to fill the bucket with water, determine (a) the volume and mass 

flow rates of water through the hose, and (b) the average velocity of water at the 

nozzle exit. 

     

 

 

 

 

 

 

 

 

 

                

       

 

 

 

 

Example 3–2: A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open 

to the atmosphere is initially filled with water. Now the discharge plug near the 

bottom of the tank is pulled out, and a water jet whose diameter is 0.5 in streams 

out (Fig. 3.4). The average velocity of the jet is given by  √    , where h is the 

height of water in the tank measured from the center of the hole (a variable) and g 
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is the gravitational acceleration. Determine how long it will take for the water level 

in the tank to drop to 2 ft from the bottom. 

Solution: 
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1.4 The Bernoulli equation 

The Bernoulli equation is an approximate relation between pressure, velocity, and 

elevation, and is valid in regions of steady, incompressible flow where net 

frictional forces are negligible (Fig. 3-4). Despite its simplicity, it has proven to be 

a very powerful tool in fluid mechanics. In this section, we derive the Bernoulli 

equation by applying the conservation of linear momentum principle, and we 

demonstrate both its usefulness and its limitations. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: The Bernoulli equation is an approximate equation that is valid 

only in inviscid regions of flow where net viscous forces are negligibly small 

compared to inertial, gravitational, or pressure forces. Such regions occur 

outside of boundary layers and wakes. 

Figure 3.5: The forces acting on a fluid particle along a streamline. 
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Consider the motion of a fluid particle in a flow field in steady flow described in 

detail. Applying Newton’s second law (which is referred to as the conservation of 

linear momentum relation in fluid mechanics) in the s-direction on a particle 

moving along a streamline gives,  

∑                                                                                                 (3.10) 

In regions of flow where net frictional forces are negligible, the significant forces 

acting in the s-direction are the pressure (acting on both sides) and the component 

of the weight of the particle in the s-direction (Figure 3-5). Therefore, Equation 3-

10 becomes 

    (    )           
  

  
                                            (3.11) 

where θ is the angle between the normal of the streamline and the vertical z-axis at 

that point, m = ρV = ρdAds is the mass, W = mg = ρgdAds is the weight of the fluid 

particle, and sinθ = dz/ds. Substituting, 

              
  

  
        

  

  
                                                  (3.12) 

Canceling dA from each term and simplifying, 

                                                                                        (3.13) 

Noting that VdV = 0.5 d(V
2
) and dividing each term by ρ gives 

  

 
 
 

 
 (  )                                                                                 (3.14) 

Integrating    

Steady flow: ∫
  

 
 
  

 
              (                  )           (3.15) 

since the last two terms are exact differentials. In the case of incompressible flow, 

the first term also becomes an exact differential, and its integration gives 

Steady, incompressible flow: 
 

 
 
  

 
                                        (3.16) 

This is the famous Bernoulli equation, which is commonly used in fluid 

mechanics for steady, incompressible flow along a streamline in inviscid regions of 
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flow. The value of the constant can be evaluated at any point on the streamline 

where the pressure, density, velocity, and elevation are known. The Bernoulli 

equation can also be written between any two points on the same streamline as 

Steady, incompressible flow:  
  

 
 
  
 

 
       

  

 
 
  
 

 
                      (3.17) 

The Bernoulli equation is obtained from the conservation of momentum for a fluid 

particle moving along a streamline. It can also be obtained from the first law of 

thermodynamics applied to a steady-flow system. 

The Bernoulli Equation According to Static, Dynamic, and Stagnation 

Pressures 

The Bernoulli equation states that the sum of the flow, kinetic, and potential 

energies of a fluid particle along a streamline is constant. Therefore, the kinetic and 

potential energies of the fluid can be converted to flow energy (and vice versa) 

during flow, causing the pressure to change. This phenomenon can be made more 

visible by multiplying the Bernoulli equation by the density ρ, 

   
  

 
                   (along a streamline)                                      (3.18) 

Each term in this equation has pressure units, and thus each term represents some 

kind of pressure: 

 P is the static pressure (it does not incorporate any dynamic effects); it 

represents the actual thermodynamic pressure of the fluid. This is the same 

as the pressure used in thermodynamics and property tables. 

 ρV
2
/2 is the dynamic pressure; it represents the pressure rise when the fluid 

in motion is brought to a stop isentropically. 

 ρgz is the hydrostatic pressure, which is not pressure in a real sense since its 

value depends on the reference level selected; it accounts for the elevation 

effects, i.e., of fluid weight on pressure. 
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The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 

streamline is constant. 

The sum of the static and dynamic pressures is called the stagnation pressure, and 

it is expressed as 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               
  

 
                 (kPa)                                                      (3.19) 

The stagnation pressure represents the pressure at a point where the fluid is brought 

to a complete stop isentropically. The static, dynamic, and stagnation pressures are 

Figure 3.6: The static, dynamic, and stagnation pressures. 
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shown in Figure 3.6. When static and stagnation pressures are measured at a 

specified location, the fluid velocity at that location can be calculated from 

  √
 (              )

 
                 (m/s)                                                      (3.20) 

 

Example 1: 

Water is flowing from a hose attached to a water main at 400 kPa gage (Figure 

3.7). A child places his thumb to cover most of the hose outlet, causing a thin jet of 

high-speed water to emerge. If the hose is held upward, what is the maximum 

height that the jet could achieve? 

Solution: 

The water height will be maximum under the stated 

assumptions. The velocity inside the hose is relatively low 

(V1= 0) and we take the hose outlet as the reference level (z1= 

0). At the top of the water trajectory V2= 0, and atmospheric 

pressure pertains. Then the Bernoulli equation simplifies to       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 
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Example 2: 

A large tank open to the atmosphere is filled with water to a height of 5 m from the 

outlet tap (Figure 3.8 ). A tap near the bottom of the tank is now opened, and water 

flows out from the smooth and rounded outlet. Determine the water velocity at the 

outlet. 

Solution: 

We take point 1 to be at the free surface of water so 

that P1 = Patm (open to the atmosphere), V1 = 0 (the 

tank is large relative to the outlet), and z1 = 5 m and z2 

= 0 (we take the reference level at the center of the 

outlet). Also, P2 = Patm (water discharges into the 

atmosphere). Then the Bernoulli equation simplifies to 

 

    

 

 

 

       

Example 3: 

During a trip to the beach (Patm = 1 atm = 101.3 kPa), a car runs out of gasoline, 

and it becomes necessary to siphon gas out of the car of a Good Samaritan (Figure 

3.9). The siphon is a small-diameter hose, and to start the siphon it is necessary to 

insert one siphon end in the full gas tank, fill the hose with gasoline via suction, 

and then place the other end in a gas can below the level of the gas tank. The 

difference in pressure between point 1 (at the free surface of the gasoline in the 

Figure 3.8 
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tank) and point 2 (at the outlet of the tube) causes the liquid to flow from the 

higher to the lower elevation. Point 2 is located 0.75 m below point 1 in this case, 

and point 3 is located 2 m above point 1. The siphon diameter is 4 mm, and 

frictional losses in the siphon are to be disregarded. Determine (a) the minimum 

time to withdraw 4 L of gasoline from the tank to the can and (b) the pressure at 

point 3. The density of gasoline is 750 kg/m
3
. 

Solution: 

(a) We take point 1 to be at the free surface of 

gasoline in the tank so that P1 = Patm (open 

to the atmosphere), V1 = 0 (the tank is large 

relative to the tube diameter), and z2 = 0 

(point 2 is taken as the reference level). 

Also, P2 = Patm (gasoline           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 
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Example 4: 

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as shown in 

Figure 3-10, to measure static and stagnation (static + dynamic) pressures. For the 

indicated water column heights, determine the velocity at the c enter of the pipe. 

Solution: 

We take points 1 and 2 along the centerline of 

the pipe, with point 1 directly under the 

piezometer and point 2 at the tip of the Pitot 

tube. This is a steady flow with straight and 

parallel streamlines, and the gage pressures at 

points 1 and 2 can be expressed as    

       

 

 

Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the application 

of the Bernoulli equation between points 1 and 2 gives     

     

 

 

Substituting the P1 and P2 expressions gives 

     

 

 

Solving for V1 and substituting, 

       

 

 

Figure 3.10, Schematic for Example 
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1.5 Mechanical energy and efficiency 

The mechanical energy can be defined as the form of energy that can be converted 

to mechanical work completely and directly by an ideal mechanical device such as 

an ideal turbine. Kinetic and potential energies are the familiar forms of 

mechanical energy. Thermal energy is not mechanical energy, however, since it 

cannot be converted to work directly and completely (the second law of 

thermodynamics). 

A pump transfers mechanical energy to a fluid by raising its pressure, and a 

turbine extracts mechanical energy from a fluid by dropping its pressure. 

Therefore, the pressure of a flowing fluid is also associated with its mechanical 

energy. 

The steady-flow energy equation on a unit-mass basis can be written conveniently 

as a mechanical energy balance as, 

 

 

Noting that Wshaft, net in= Wshaft, in - Wshaft, out = Wpump - Wturbine, the mechanical energy 

balance can be written more explicitly as, 

 

 

where Wpump is the mechanical work input (due to the presence of a pump, fan, 

compressor, etc.) and Wturbine is the mechanical work output. When the flow is 

incompressible, either absolute or gage pressure can be used for P since Patm/ρ 

would appear on both sides and would cancel out. emech, loss is the total mechanical 

power loss, which consists of pump and turbine losses as well as the frictional 

losses in the piping network. Multiplying above Equation by the mass flow rate ṁ 

gives: 
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By convention, irreversible pump and turbine losses are treated separately from 

irreversible losses due to other components of the piping system. Thus the energy 

equation can be expressed in its most common form in terms of heads as, 

 

 

 

 

 

 

 

 

 

 

 

 

1 and 2 due to all components of the piping system other than the pump or turbine. 

Example 5: 

The pump of a water distribution system is powered by a 15-kW electric motor 

whose efficiency is 90 percent (Figure 3.11). The water flow rate through the 

pump is 50 L/s. The diameters of the inlet and outlet pipes are the same, and the 

elevation difference across the pump is negligible. If the pressures at the inlet and 

outlet of the pump are measured to be 100 kPa and 300 kPa (absolute), 

respectively, determine (a) the mechanical efficiency of the pump and (b) the 

temperature rise of water as it flows through the pump due to the mechanical 

inefficiency. 

Solution: 
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1 The flow is steady and incompressible.  

2 The pump is driven by an external motor so that the 

heat generated by the motor is dissipated to the 

atmosphere.  

3 The elevation difference between the inlet and 

outlet of the pump is negligible, z1 ≈ z2.  

4 The inlet and outlet diameters are the same and thus 

the inlet and outlet velocities and kinetic energy 

correction factors are equal, V1 = V2.  

 

(a) The mass flow rate of water through the pump is 

 

 

The motor draws 15 kW of power and is 90 percent efficient. Thus the mechanical 

(shaft) power it delivers to the pump is 

 

 

To determine the mechanical efficiency of the pump, we need to know the increase 

in the mechanical energy of the fluid as it flows through the pump, which is 

 

 

Where α is the kinetic energy correction factor. 

Simplifying it for this case and substituting the given values, 

 

 

Then the mechanical efficiency of the pump becomes 

 

 

 

Figure 3.11  
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(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is 

imparted to the fluid as mechanical energy. The remaining 3.5 kW is converted to 

thermal energy due to frictional effects, and this “lost” mechanical energy 

manifests itself as a heating effect in the fluid, 

 
 
 
 

The temperature rise of water due to this mechanical inefficiency is determined 

from the thermal energy balance,  

 

Example 6: 

In a hydroelectric power plant, 100 m
3
/s of water flows from an elevation of 120 m 

to a turbine, where electric power is generated (Figure 3-12). The total irreversible 

head loss in the piping system from point 1 to point 2 (excluding the turbine unit) 

is determined to be 35 m. If the overall efficiency of the turbine–generator is 80 

percent, estimate the electric power output. 

Solution: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution 
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Therefore, a perfect turbine–generator would generate 83,400 kW of electricity 

from this resource. The electric power generated by the actual unit is 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7: 

Water is pumped from a lower reservoir to a higher reservoir by a pump that 

provides 20 kW of useful mechanical power to the water (Figure 3.13). The free 

surface of the upper reservoir is 45 m higher than the surface of the lower 

reservoir. If the flow rate of water is measured to be 0.03 m
3
/s, determine the 

irreversible head loss of the system and the lost mechanical power during this 

process. 

Solution: 

The mass flow rate of water through the 

system is 

 

 

 

Figure 3.12  

Figure 3.13  



 Mass, Bernoulli, and Energy Equations                                        Chapter: Three 

21 

 

We choose points 1 and 2 at the free surfaces of the lower and upper reservoirs, 

respectively, and take the surface of the lower reservoir as the reference level (z1 = 

0). Both points are open to the atmosphere (P1 = P2 = Patm) and the velocities at 

both locations are negligible (V1 = V2 = 0). Then the energy equation for steady 

incompressible flow for a control volume between 1 and 2 reduces to 
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Consider a container of height h filled with water, as shown in Figure 3-14, with 

the reference level selected at the bottom surface. The gage pressure and the 

potential energy per unit mass are, respectively, PA= 0 and peA= gh at point A at 

the free surface, and PB= ρgh and peB= 0 at point B at the bottom of the container. 

An ideal hydraulic turbine would produce the same work per unit mass wturbine = gh 

whether it receives water (or any other fluid with constant density) from the top or 

from the bottom of the container. Note that we are also assuming ideal flow (no 

irreversible losses) through the pipe leading from the tank to the turbine. 

Therefore, the total mechanical energy of water at the bottom is equivalent to that 

at the top.      

 

 

 

 

 

 

 

 

 

 

 

The transfer of mechanical energy is usually accomplished by a rotating shaft, and 

thus mechanical work is often referred to as shaft work. A pump or a fan receives 

shaft work (usually from an electric motor) and transfers it to the fluid as 

mechanical energy (less frictional losses). A turbine, on the other hand, converts 

the mechanical energy of a fluid to shaft work. In the absence of any 

irreversibilities such as friction, mechanical energy can be converted entirely from 

Figure 3.14: The mechanical energy of water at the bottom of a container is equal to the 

mechanical energy at any depth including the free surface of the container. 
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one mechanical form to another, and the mechanical efficiency of a device or 

process can be defined as, 

      

 

A conversion efficiency of less than 100 percent indicates that conversion is less 

than perfect and some losses have occurred during conversion. A mechanical 

efficiency of 97 percent indicates that 3 percent of the mechanical energy input is 

converted to thermal energy as a result of frictional heating, and this will manifest 

itself as a slight rise in the temperature of the fluid. 

The degree of perfection of the conversion process between the mechanical work 

supplied or extracted and the mechanical energy of the fluid is expressed by the 

pump efficiency and turbine efficiency, defined as    

     

 

where ∆Emech,fluid= Emech,out - Emech, in is the rate of increase in the mechanical energy 

of the fluid, which is equivalent to the useful pumping power Wpump, u supplied to 

the fluid, and 

      

 

where ∆Emech, fluid = Emech, in - Emech, out is the rate of decrease in the mechanical 

energy of the fluid, which is equivalent to the mechanical power extracted from the 

fluid by the turbine W turbine, e, and we use the absolute value sign to avoid 

negative values for efficiencies. A pump or turbine efficiency of 100 percent 

indicates perfect conversion between the shaft work and the mechanical energy of 

the fluid, and this value can be approached (but never attained) as the frictional 

effects are minimized. 

 



 Mass, Bernoulli, and Energy Equations                                        Chapter: Three 

24 

 

Example 8:  The water in a large lake is to be used to generate electricity by the 

installation of a hydraulic turbine–generator at a location where the depth of the 

water is 50 m (Figure 3.15). Water is to be supplied at a rate of 5000 kg/s. If the 

electric power generated is measured to be 1862 kW and the generator efficiency is 

95 percent, determine (a) the overall efficiency of the turbine– generator, (b) the 

mechanical efficiency of the turbine, and (c) the shaft power supplied by the 

turbine to the generator. 

Solution: 

 (a) We take the bottom of the lake as the 

reference level for convenience. Then 

kinetic and potential energies of water are 

zero, and the change in its mechanical 

energy per unit mass becomes     

 

 

 

 

 

 

 

(b) Knowing the overall and generator efficiencies, the mechanical efficiency of 

the turbine is determined from  

     

 

(c) The shaft power output is determined from the definition of mechanical 

efficiency, 

       

Figure 3.15: Schematic for Example 8. 
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1.6 The linear momentum equation 

Newton’s second law for a system of mass m subjected to a net force  ⃗ is 

expressed as 

      

 

Where   ⃗⃗⃗ is the linear momentum of the system. Noting that both the density and 

velocity may change from point to point within the system, Newton’s second law 

can be expressed more generally as 

     

 

where         is the mass of a differential volume element   , and is its 

momentum. Therefore, Newton’s second law can be stated as the sum of all 

external forces acting on a system is equal to the time rate of change of linear 

momentum of the system. This statement is valid for a coordinate system that is at 

rest or moves with a constant velocity, called an inertial coordinate system or 

inertial reference frame. Accelerating systems such as aircraft during takeoff are 

best analyzed using non-inertial (or accelerating) coordinate systems fixed to the 

aircraft. Note that the above equation is a vector relation, and thus the quantities  ⃗ 

and  ⃗⃗ have direction as well as magnitude. 

The general form of the linear momentum equation that applies to fixed, moving, 

or deforming control volumes is obtained to be 
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In General: 

     

 

 

Note that the momentum equation is a vector equation, and thus each term should 

be treated as a vector. Also, the components of this equation can be resolved along 

orthogonal coordinates (such as x, y, and z in the Cartesian coordinate system) for 

convenience. 

The above equation is exact for fixed control volumes, it is not always convenient 

when solving practical engineering problems because of the integrals. Instead, as 

we did for conservation of mass, we would like to rewrite the above equation in 

terms of average velocities and mass flow rates through inlets and outlets. In other 

words, our desire is to rewrite the equation in algebraic rather than integral form. 

In many practical applications, fluid crosses the boundaries of the control volume 

at one or more inlets and one or more outlets, and carries with it some momentum 

into or out of the control volume. For simplicity, we always draw our control 

surface such that it slices normal to the inflow or outflow velocity at each such 

inlet or outlet (Figure 3.16). The mass flow rate ṁ into or out of the control volume 

across an inlet or outlet at which ρ is nearly constant is 

 

 

 

 

 

 

 

 

Figure 3.16: In a typical engineering problem, 

the control volume may contain many inlets 

and outlets; at each inlet or outlet we define the 

mass flow rate ṁ and the average velocity Vavg. 



 Mass, Bernoulli, and Energy Equations                                        Chapter: Three 

27 

 

Mass flow rate across an inlet or outlet: 

 

 

 

Then we could write the rate of inflow or outflow of momentum through the inlet 

or outlet in simple algebraic form, Momentum flow rate across a uniform inlet or 

outlet: 

 

The uniform flow approximation is reasonable at some inlets and outlets, e.g., the 

well-rounded entrance to a pipe, the flow at the entrance to a wind tunnel test 

section, and a slice through a water jet moving at nearly uniform speed through air 

(Figure 3-17). 

    

 

 

 

 

 

 

 

 

1.7 Momentum-Flux Correction Factor, β 

Unfortunately, the velocity across most inlets and outlets of practical engineering 

interest is not uniform. Nevertheless, it turns out that we can still convert the 

control surface integral of Equation, 

Figure 3.17: Examples of inlets or outlets in which the uniform flow approximation 

is reasonable: (a) the well-rounded entrance to a pipe, (b) the entrance to a wind 

tunnel test section, and (c) a slice through a free water jet in air. 
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 into algebraic form, but a dimensionless correction factor b, called the 

momentum-flux correction factor, is required, as first shown by the French 

scientist Joseph Boussinesq (1842–1929). The algebraic form of the above 

equation for a fixed control volume is then written as,    

       

 

 

where a unique value of momentum-flux correction factor is applied to each inlet 

and outlet in the control surface. Note that β= 1 for the case of uniform flow over 

an inlet or outlet, as in Figure 3-17.  

Momentum-flux correction factor:     

 

It turns out that for any velocity profile you can imagine, β is always greater than 

or equal to unity.  

Example 9: 

Consider laminar flow through a very long straight section of round pipe. The 

velocity profile through a cross-sectional area of the pipe is parabolic (Figure 3-

18), with the axial velocity component given by   

 

 

where R is the radius of the inner wall of the pipe and Vavg is the average velocity. 

Calculate the momentum-flux correction factor through a cross section of the pipe 

for the case in which the pipe flow represents an outlet of the control volume, as 

sketched in Figure 3-18. 
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Solution: 

We substitute the given velocity profile for V 

in the above equation and integrate, noting 

that dAc= 2πrdr, 

 

 

 

 

 

 

Defining a new integration variable y = 1 - r 
2
/R

2 
and thus dy = -2r dr/R

2
 (also, y = 

1 at r = 0, and y= 0 at r= R) and performing the integration, the momentum-flux 

correction factor for fully developed laminar flow becomes 

 

Laminar flow:  

 

 

Notice: For turbulent flow β may have an insignificant effect at inlets and outlets, 

but for laminar flow β may be important and should not be neglected. It is wise to 

include β in all momentum control volume problems. 

 

 

 

 

 

Figure 3.18: Velocity profile over a cross section of a pipe 

in which the flow is fully-developed and laminar. 
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1.8 Steady Flow 

If the flow is also steady, the time derivative term in Equation: 

 

 

vanishes and we are left with, 

Steady linear momentum equation:  

 

where we dropped the subscript “avg” from average velocity. Above Equation 

states that the net force acting on the control volume during steady flow is equal to 

the difference between the rates of outgoing and incoming momentum flows. This 

statement is illustrated in Figure 3.19. It can also be expressed for any direction, 

since above equation is a vector equation. 

 

 

 

 

 

 

 

 

      

 

 

 

Steady Flow with One Inlet and One Outlet: Many practical problems involve just 

one inlet and one outlet (Figure 3.20). The mass flow rate for such single-stream 

systems remains constant, and above equation reduces to, 

One inlet and one outlet: 

Figure 3.19: Velocity profile over a cross section of a pipe 

in which the flow is fully-developed and laminar. 
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Example 10:  

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal 

pipe upward 30° while accelerating it as shown in figure 3.20. The elbow 

discharges water into the atmosphere. The cross-sectional area of the elbow is 113 

cm2 at the inlet and 7 cm2 at the outlet. The elevation difference between the 

centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water 

in it is considered to be negligible. Determine (a) the gage pressure at the center of 

the inlet of the elbow and (b) the anchoring force needed to hold the elbow in 

place. Take the momentum-flux correction factor to be β= 1.03. 

Solution:  

(a) We take the elbow as the control 

volume and designate the inlet by ① and 

the outlet by ②. We also take the x- and 

z-coordinates as shown.  

 

The continuity equation for this one-inlet, one-outlet, steady-flow system is ṁ1 = 

ṁ2 = ṁ = 14 kg/s. Noting that ṁ= ρAV, the inlet and outlet velocities of water are 

       

 

 

 

 

 

 

 

 

       

 

Figure 3.20: Schematic for Example 10. 
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(b) The momentum equation for steady one-dimensional flow is 

     

 

 

We let the x- and z-components of the anchoring force of the elbow be FRx and FRz, 

and assume them to be in the positive direction. We also use gage pressure since 

the atmospheric pressure acts on the entire control surface. Then the momentum 

equations along the x- and z-axes become     

     

 

 

 

Solving for FRx and FRz, and substituting the given values, 

 

 

 

 

 

 

 

 

Example 11:  

A reversing elbow such that the fluid makes a 180° U-turn before it is discharged, 

as shown in Figure 3.21. The elevation difference between the centers of the inlet 

and the exit sections is still 0.3 m. Determine the anchoring force needed to hold 

the elbow in place. Take the momentum-flux correction factor to be β= 1.03. 

 

 

 

 

 

 

Figure 3.21: Schematic for Example 11. 

V2= 20 m/s 

V1= 1.204 m/s 

P1, gage= 2022oo Pa 

A1= 0.0113 m2 
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Solution: 

The vertical component of the anchoring force at the connection of the elbow to 

the pipe is zero in this case (FRz= 0) since there is no other force or momentum flux 

in the vertical direction. 

      

 

 

 

 

 

Noting that the outlet velocity is negative since it is in the negative x-direction. 

Therefore, the horizontal force on the flange is 2591 N acting in the negative x-

direction (the elbow is trying to separate from the pipe). 

Example 12:  

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes a 

stationary vertical plate at a rate of 10 kg/s with a normal velocity of 20 m/s 

(Figure 3.22). After the strike, the water stream splatters off in all directions in the 

plane of the plate. Determine the force needed to prevent the plate from moving 

horizontally due to the water stream. Take the momentum-flux correction factor to 

be β= 1. 

Solution: 

The momentum equation for steady one-

dimensional flow is given as,      

 

 

 

 

 

Figure 3.22: Schematic for Example 12. 
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Writing it for this problem along the x-direction (without forgetting the negative 

sign for forces and velocities in the negative x-direction) and noting that V1, x = V1 

and V2, x = 0 gives, 

                                       Substituting the given values, 

 

 

    

Example 13:  

A wind generator with a 30-ft-diameter blade span has a cut-in wind speed 

(minimum speed for power generation) of 7 mph, at which velocity the turbine 

generates 0.4 kW of electric power (Figure 3–23). Determine (a) the efficiency of 

the wind turbine–generator unit and (b) the horizontal force exerted by the wind on 

the supporting mast of the wind turbine. What is the effect of doubling the wind 

velocity to 14 mph on power generation and the force exerted? Assume the 

efficiency remains the same, and take the density of air to be 0.076 lbm/ft
3
. Take 

the momentum-flux correction factor to be β= 1. 

Solution: 

The power potential of the wind is 

proportional to its kinetic energy, which 

is V
2
/2 per unit mass, and thus the 

maximum power is ṁV
2
/2 for a given 

mass flow rate: 

         

 

 

 

 

Figure 3.23: Schematic for Example 13. 
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Therefore, the available power to the wind turbine is 1.225 kW at the wind velocity 

of 7 mph. Then the turbine–generator efficiency becomes 

      

 

 

Noting that the mass flow rate remains constant, the exit velocity is determined to 

be 

         

        

 

The momentum equation for steady one-dimensional flow is given as          

        

 

Substituting the known values gives 

 

 

 

Then the force exerted by the wind on the mast becomes Fmast = - FR = 31.5 lbf. 
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Module 6 : Lecture 1 
DIMENSIONAL ANALYSIS 

(Part – I) 
Overview 

Many practical flow problems of different nature can be solved by using equations 

and analytical procedures, as discussed in the previous modules. However, solutions 

of some real flow problems depend heavily on experimental data and the refinements 

in the analysis are made, based on the measurements. Sometimes, the experimental 

work in the laboratory is not only time-consuming, but also expensive. So, the 

dimensional analysis is an important tool that helps in correlating analytical results 

with experimental data for such unknown flow problems. Also, some dimensionless 

parameters and scaling laws can be framed in order to predict the prototype behavior 

from the measurements on the model. The important terms used in this module may 

be defined as below; 

Dimensional Analysis: The systematic procedure of identifying the variables in a 

physical phenomena and correlating them to form a set of dimensionless group is 

known as dimensional analysis.  

Dimensional Homogeneity: If an equation truly expresses a proper relationship among 

variables in a physical process, then it will be dimensionally homogeneous. The 

equations are correct for any system of units and consequently each group of terms in 

the equation must have the same dimensional representation. This is also known as 

the law of dimensional homogeneity.  

Dimensional variables: These are the quantities, which actually vary during a given 

case and can be plotted against each other. 

Dimensional constants: These are normally held constant during a given run. But, 

they may vary from case to case.  

Pure constants: They have no dimensions, but, while performing the mathematical 

manipulation, they can arise.   
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Let us explain these terms from the following examples: 

- Displacement of a free falling body is given as, 2
0 0

1
2

S S V t gt= + + , where, 0V  is the 

initial velocity, g  is the acceleration due to gravity, t  is the time, 0andS S  are the 

final and initial distances, respectively. Each term in this equation has the dimension 

of length [ ]L and hence it is dimensionally homogeneous. Here, andS t  are the 

dimensional variables, 0 0, andg S V  are the dimensional constants and 1
2

 arises due 

to mathematical manipulation and is the pure constant.  

- Bernoulli’s equation for incompressible flow is written as, 21 C
2

p V gz
ρ
+ + = . Here, 

p  is the pressure, V  is the velocity, z is the distance, ρ  is the density and g  is the 

acceleration due to gravity. In this case, the dimensional variables are , andp V z , the 

dimensional constants are , andg Cρ  and 1
2

 is the pure constant. Each term in this 

equation including the constant has dimension of 2 2L T −   and hence it is 

dimensionally homogeneous.  

 

Buckingham pi Theorem 

The dimensional analysis for the experimental data of unknown flow problems leads 

to some non-dimensional parameters. These dimensionless products are frequently 

referred as pi terms. Based on the concept of dimensional homogeneity, these 

dimensionless parameters may be grouped and expressed in functional forms. This 

idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the 

theorem is named accordingly.   

  Buckingham pi theorem, states that if an equation involving k  variables is 

dimensionally homogeneous, then it can be reduced to a relationship among ( )k r−  

independent dimensionless products, where r  is the minimum number of reference 

dimensions required to describe the variable. For a physical system, involving k  

variables, the functional relation of variables can be written mathematically as,  

( )1 2, .........., ky f x x x=                                                (6.1.1) 
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In Eq. (6.1.1), it should be ensured that the dimensions of the variables on the left side 

of the equation are equal to the dimensions of any term on the right side of equation. 

Now, it is possible to rearrange the above equation into a set of dimensionless 

products (pi terms), so that  

( )1 2 3, .........., k rϕ −Π = Π Π Π                                                (6.1.2) 

Here, ( )2 3, .........., k rϕ −Π Π Π  is a function of 2Π  through k r−Π . The required number 

of pi terms is less than the number of original reference variables by r . These 

reference dimensions are usually the basic dimensions , andM L T  (Mass, Length 

and Time). 

 

Determination of pi Terms 

Several methods can be used to form dimensionless products or pi terms that arise in 

dimensional analysis. But, there is a systematic procedure called method of repeating 

variables that allows in deciding the dimensionless and independent pi terms. For a 

given problem, following distinct steps are followed.  

Step I: List out all the variables that are involved in the problem. The ‘variable’ is any 

quantity including dimensional and non-dimensional constants in a physical situation 

under investigation. Typically, these variables are those that are necessary to describe 

the “geometry” of the system (diameter, length etc.), to define fluid properties 

(density, viscosity etc.) and to indicate the external effects influencing the system 

(force, pressure etc.). All the variables must be independent in nature so as to 

minimize the number of variables required to describe the complete system.  

Step II: Express each variable in terms of basic dimensions. Typically, for fluid 

mechanics problems, the basic dimensions will be either , andM L T  or , andF L T . 

Dimensionally, these two sets are related through Newton’s second law ( ).F m a=  so 

that 2F MLT −=  e.g. 3MLρ −=  or 4 2FL Tρ −= . It should be noted that these basic 

dimensions should not be mixed.  

Step III: Decide the required number of pi terms. It can be determined by using 

Buckingham pi theorem which indicates that the number of pi terms is equal to 

( )k r− , where k  is the number of variables in the problem (determined from Step I) 

and r  is the number of reference dimensions required to describe these variables 

(determined from Step II).  
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Step IV: Amongst the original list of variables, select those variables that can be 

combined to form pi terms. These are called as repeating variables. The required 

number of repeating variables is equal to the number of reference dimensions. Each 

repeating variable must be dimensionally independent of the others, i.e. they cannot 

be combined themselves to form any dimensionless product. Since there is a 

possibility of repeating variables to appear in more than one pi term, so dependent 

variables should not be chosen as one of the repeating variable.   

Step V: Essentially, the pi terms are formed by multiplying one of the non-repeating 

variables by the product of the repeating variables each raised to an exponent that will 

make the combination dimensionless. It usually takes the form of 1 2 3
a b c

ix x x x  where 

the exponents , anda b c are determined so that the combination is dimensionless.  

Step VI:  Repeat the ‘Step V’ for each of the remaining non-repeating variables. The 

resulting set of pi terms will correspond to the required number obtained from Step 

III.  

Step VII: After obtaining the required number of pi terms, make sure that all the pi 

terms are dimensionless. It can be checked by simply substituting the basic dimension 

( ), andM L T  of the variables into the pi terms.   

Step VIII: Typically, the final form of relationship among the pi terms can be written 

in the form of Eq. (6.1.2) where, 1Π  would contain the dependent variable in the 

numerator. The actual functional relationship among pi terms is determined from 

experiment.  
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Illustration of Pi Theorem 
 
Let us consider the following example to illustrate the procedure of determining the 

various steps in the pi theorem.   

Example (Pressure drop in a pipe flow) 

Consider a steady flow of an incompressible Newtonian fluid through a long, 

smooth walled, horizontal circular pipe. It is required to measure the pressure drop per 

unit length of the pipe and find the number of non-dimensional parameters involved 

in the problem. Also, it is desired to know the functional relation among these 

dimensionless parameters.  

Step I: Let us express all the pertinent variables involved in the experimentation 

of pressure drop per unit length ( )lp∆ of the pipe, in the following form; 

( ), , ,lp f D Vρ µ∆ =                                                     (6.1.3) 

where, D  is the pipe diameter, ρ  is the fluid density, µ  is the viscosity of the fluid 

and V  is the mean velocity at which the fluid is flowing through the pipe. 

Step II: Next step is to express all the variables in terms of basic dimensions i.e. 

, andM L T . It then follows that 
2 2 3 1 1 1; ; ; ;lp ML T D L ML ML T V LTρ µ− − − − − −∆ = = = = =                (6.1.4) 

Step III: Apply Buckingham theorem to decide the number of pi terms required. There 

are five variables (including the dependent variable lp∆ ) and three reference 

dimensions. Since, 5 and 3k r= = , only two  pi terms are required for this problem.   

Step IV: The repeating variables to form pi terms, need to be selected from the list 

, , andD Vρ µ . It is to be noted that the dependent variable should not be used as 

one of the repeating variable. Since, there are three reference dimensions involved, so 

we need to select three repeating variable. These repeating variables should be 

dimensionally independent, i.e. dimensionless product cannot be formed from this set. 

In this case, , andD Vρ may be chosen as the repeating variables.  

Step V: Now, first pi term is formed between the dependent variable and the repeating 

variables. It is written as, 

1
a b c

lp D V ρΠ = ∆                                                              (6.1.5) 

Since, this combination need to be dimensionless, it follows that 

( )( ) ( ) ( )2 2 1 3 0 0 0b caML T L LT ML M L T− − − − =                                   (6.1.6) 
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The exponents , anda b c  must be determined by equating the exponents for each of 

the terms , andM L T  i.e. 

For : 1 0
For : 2 3 0
For : 2 0

M c
L a b c
T b

+ =
− + + − =
− − =

                                              (6.1.7) 

The solution of this algebraic equations gives 1; 2; 1a b c= = − = − . Therefore, 

1 2
lp D
Vρ

∆
Π =                                                                   (6.1.8) 

The process is repeated for remaining non-repeating variables with other additional 

variable ( )µ  so that, 

2 . . .d e fD Vµ ρΠ =                                                              (6.1.9) 

Since, this combination need to be dimensionless, it follows that 

( )( ) ( ) ( )1 1 1 3 0 0 0e fdML T L LT ML M L T− − − − =                                 (6.1.10) 

Equating the exponents, 

For : 1 0
For : 1 3 0
For : 1 0

M f
L d e f
T e

+ =
− + + − =
− − =

                                            (6.1.11) 

The solution of this algebraic equation gives 1; 1; 1d e f= − = − = − . Therefore,  

2 VD
µ

ρ
Π =                                                              (6.1.12) 

Step VI: Now, the correct numbers of pi terms are formed as determined in “Step III”. 

In order to make sure about the dimensionality of pi terms, they are written as, 

( )( )
( )( )
( )( )

( )( )( )

2 2
0 0 0

1 22 3 1

1 1
0 0 0

2 3 1

l
ML T Lp D M L T

V ML LT

ML T L
M L T

V D ML LT L

ρ

µ
ρ

− −

− −

− −

− −

∆
Π = = =

Π = = =

                        (6.1.13) 

Step VII: Finally, the result of dimensional analysis is expressed among the pi terms 

as, 

2

1
Re

lD p
V V D

µφ φ
ρ ρ

 ∆  = =   
  

                                        (6.1.14) 

It may be noted here that Re is the Reynolds number.  
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Remarks 

- If the difference in the number of variables for a given problem and number of 

reference dimensions is equal to unity, then only one Pi term is required to describe 

the phenomena. Here, the functional relationship for the one Pi term is a constant 

quantity and it is determined from the experiment.  

1 ConstantΠ =                                                      (6.1.15) 

- The problems involving two Pi terms can be described such that  

( )1 2φΠ = Π                                                          (6.1.16) 

Here, the functional relationship among the variables can then be determined by 

varying 2Π  and measuring the corresponding values of 1Π .  
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Module 6 : Lecture 2 
DIMENSIONAL ANALYSIS 

(Part – II) 
 

Non Dimensional numbers in Fluid Dynamics 

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure, 

gravity, surface tension and compressibility. These forces can be written as follows; 

( ) ( )

2 2

2

3

2

Inertia force: .

Viscous force:

Pressure force:

Gravity force:
Surface tension force:
Compressibility force: v v

dVm a V V L
dt
duA A V L
dy

p A p L

m g g L
L

E A E L

ρ ρ

τ µ µ

ρ
σ

= ∝

= ∝

∆ ∝ ∆

∝

∝

                                   (6.2.1) 

The notations used in Eq. (6.2.1) are given in subsequent paragraph of this section. It 

may be noted that the ratio of any two forces will be dimensionless. Since, inertia 

forces are very important in fluid mechanics problems, the ratio of the inertia force to 

each of the other forces listed above leads to fundamental dimensionless groups. 

Some of them are defined as given below; 

Reynolds number ( )Re : It is defined as the ratio of inertia force to viscous force. 

Mathematically,  

Re VL VLρ
µ ν

= =                                                             (6.2.2) 

where V  is the velocity of the flow, L  is the characteristics length, , andρ µ ν  are 

the density, dynamic viscosity and kinematic viscosity of the fluid respectively. If  

Re  is very small, there is an indication that the viscous forces are dominant compared 

to inertia forces. Such types of flows are commonly referred to as “creeping/viscous 

flows”. Conversely, for large Re , viscous forces are small compared to inertial effects 

and such flow problems are characterized as inviscid analysis. This number is also 

used to study the transition between the laminar and turbulent flow regimes.  
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Euler number ( )uE : In most of the aerodynamic model testing, the pressure data are 

usually expressed mathematically as,   

21
2

u
pE
Vρ

∆
=                                                              (6.2.3) 

where p∆  is the difference in local pressure and free stream pressure, V  is the 

velocity of the flow, ρ  is the density of the fluid. The denominator in Eq. (6.2.3) is 

called “dynamic pressure”. uE  is the ratio of pressure force to inertia force and many 

a times the pressure coefficient ( )pc is a also common name which is defined by same 

manner. In the study of cavitations phenomena, similar expressions are used where, 

p∆  is the difference in liquid stream pressure and liquid-vapour pressure. This 

dimensional parameter is then called as “cavitation number”.  

Froude number ( )rF : It is interpreted as the ratio of inertia force to gravity force. 

Mathematically, it is written as,  

.r
VF
g L

=                                                        (6.2.4) 

where V  is the velocity of the flow, L  is the characteristics length descriptive of the 

flow field and g  is the acceleration due to gravity. This number is very much 

significant for flows with free surface effects such as in case of open-channel flow. In 

such types of flows, the characteristics length is the depth of water. rF  less than unity 

indicates sub-critical flow and values greater than unity indicate super-critical flow. It 

is also used to study the flow of water around ships with resulting wave motion.  

Weber number ( )eW : It is defined as the ratio of the inertia force to surface tension 

force. Mathematically,  

 
2

e
V LW ρ
σ

=                                                     (6.2.5) 

where V  is the velocity of the flow, L  is the characteristics length descriptive of the 

flow field, ρ  is the density of the fluid and  σ  is the surface tension force. This 

number is taken as an index of droplet formation and flow of thin film liquids in 

which there is an interface between two fluids. The inertia force is dominant 

compared to surface tension force when, 1eW   (e.g. flow of water in a river).  
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Mach number ( )M : It is the key parameter that characterizes the compressibility 

effects in a fluid flow and is defined as the ratio of inertia force to compressibility 

force. Mathematically,  

v

V V VM
c dp E

dρ ρ

= = =                                                (6.2.6) 

where V  is the velocity of the flow, c  is the local sonic speed, ρ  is the density of the 

fluid and vE  is the bulk modulus. Sometimes, the square of the Mach number is 

called “Cauchy number” ( )aC  i.e.  

2
2

a
v

VC M
E
ρ

= =                                                    (6.2.7) 

Both the numbers are predominantly used in problems in which fluid compressibility 

is important. When, aM  is relatively small (say, less than 0.3), the inertial forces 

induced by fluid motion are sufficiently small to cause significant change in fluid 

density. So, the compressibility of the fluid can be neglected. However, this number is 

most commonly used parameter in compressible fluid flow problems, particularly in 

the field of gas dynamics and aerodynamics.  

Strouhal number ( )tS : It is a dimensionless parameter that is likely to be important in 

unsteady, oscillating flow problems in which the frequency of oscillation is ω  and is 

defined as, 

t
LS

V
ω

=                                                            (6.2.8) 

where V  is the velocity of the flow and L  is the characteristics length descriptive of 

the flow field. This number is the measure of the ratio of the inertial forces due to 

unsteadiness of the flow (local acceleration) to inertia forces due to changes in 

velocity from point to point in the flow field (convective acceleration). This type of 

unsteady flow develops when a fluid flows past a solid body placed in the moving 

stream.  
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 In addition, there are few other dimensionless numbers that are of importance 

in fluid mechanics. They are listed below; 

Parameter Mathematical expression Qualitative definition  Importance 

Prandtl number p
r

c
P

k
µ

=  Dissipation
Conduction

  Heat convection 

Eckert number  
2

0
c

p

VE
c T

=  Kinetic energy
Enthalpy

  Dissipation 

Specific heat ratio p

v

c
c

γ =   Enthalpy
Internal energy

 Compressible flow          

Roughness ratio 
L
ε   Wall roughness

Body length
 Turbulent rough walls           

Grashof number   
( ) 3 2

2r

T g L
G

β ρ
µ

∆
=

Buoyancy
Viscosity

 Natural onvection 

Temperature ratio 
0

wT
T

  Wall temperature
Stream temperature

 Heat transfer 

Pressure coefficient 
( ) 21 2p

p pC
Vρ
∞−

=
Static pressure

Dynamic pressure
 Hydrodynamics,                                                                                          

Aerodynamics 

Lift coefficient 
( ) 21 2L

LC
A Vρ

=  Lift force
Dynamic force

 Hydrodynamics,Aero 

dynamics 

Drag coefficient 
( ) 21 2D

DC
A Vρ

=  Drag force
Dynamic force

 Hydrodynamics,                                                                                                                   

Aero dynamics 
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Modeling and Similitude 

A “model” is a representation of a physical system which is used to predict the 

behavior of the system in some desired respect. The physical system for which the 

predictions are to be made is called “prototype”. Usually, a model is smaller than the 

prototype so that laboratory experiments/studies can be conducted. It is less expensive 

to construct and operate. However, in certain situations, models are larger than the 

prototype e.g. study of the motion of blood cells whose sizes are of the order of 

micrometers. “Similitude” is the indication of a known relationship between a model 

and prototype. In other words, the model tests must yield data that can be scaled to 

obtain the similar parameters for the prototype.  

 

Theory of models: The dimensional analysis of a given problem can be described in 

terms of a set of pi terms and these non-dimensional parameters can be expressed in 

functional forms;  

( )1 2 3, ,.......... nφΠ = Π Π Π                                             (6.2.9) 

Since this equation applies to any system, governed by same variables and if the 

behavior of a particular prototype is described by Eq. (6.2.9), then a similar 

relationship can be written for a model.  

( )1 2 3, ,..........m m m nmφΠ = Π Π Π                                       (6.2.10) 

The form of the function remains the same as long as the same phenomenon is 

involved in both the prototype and the model. Therefore, if the model is designed and 

operated under following conditions,  

2 2 3 3; ............ andm m nm nΠ = Π Π = Π Π = Π                           (6.2.11) 

Then it follows that  

1 1mΠ = Π                                                            (6.2.12) 

Eq. (6.2.12) is the desired “prediction equation” and indicates that the measured value 

of 1mΠ  obtained with the model will be equal to the corresponding 1Π  for the 

prototype as long as the other pi terms are equal. These are called “model design 

conditions / similarity requirements / modeling laws”.   
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Flow Similarity 

 In order to achieve similarity between model and prototype behavior, all the 

corresponding pi terms must be equated to satisfy the following conditions. 

 

Geometric similarity: A model and prototype are geometric similar if and only if all 

body dimensions in all three coordinates have the same linear-scale ratio. In order to 

have geometric similarity between the model and prototype, the model and the 

prototype should be of the same shape, all the linear dimensions of the model can be 

related to corresponding dimensions of the prototype by a constant scale factor. 

Usually, one or more of these pi terms will involve ratios of important lengths, which 

are purely geometrical in nature.  

 

Kinematic similarity: The motions of two systems are kinematically similar if 

homogeneous particles lie at same points at same times. In a specific sense, the 

velocities at corresponding points are in the same direction (i.e. same streamline 

patterns) and are related in magnitude by a constant scale factor.   

 

Dynamic similarity: When two flows have force distributions such that identical types 

of forces are parallel and are related in magnitude by a constant scale factor at all 

corresponding points, then the flows are dynamic similar. For a model and prototype, 

the dynamic similarity exists, when both of them have same length-scale ratio, time-

scale ratio and force-scale (or mass-scale ratio).  

  In order to have complete similarity between the model and prototype, all the 

similarity flow conditions must be maintained. This will automatically follow if all 

the important variables are included in the dimensional analysis and if all the 

similarity requirements based on the resulting pi terms are satisfied. For example, in 

compressible flows, the model and prototype should have same Reynolds number, 

Mach number and specific heat ratio etc. If the flow is incompressible (without free 

surface), then same Reynolds numbers for model and prototype can satisfy the 

complete similarity. 
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Model scales 

In a given problem, if there are two length variables 1l  and 2l , the resulting 

requirement based on the pi terms obtained from these variables is, 

1 2

1 2

m m
l

l l
l l

λ= =                                                            (6.2.13) 

This ratio is defined as the “length scale”. For true models, there will be only one 

length scale and all lengths are fixed in accordance with this scale. There are other 

‘model scales’ such as velocity scale m
v

V
V

λ = 
 

, density scale m
ρ

ρ λ
ρ

 
= 

 
, viscosity 

scale m
µ

µ λ
µ

 
= 

 
 etc. Each of these scales needs to be defined for a given problem.  

 

Distorted models 

In order to achieve the complete dynamic similarity between geometrically similar 

flows, it is necessary to reproduce the independent dimensionless groups so that 

dependent parameters can also be duplicated (e.g. same Reynolds number between a 

model and prototype is ensured for dynamically similar flows).  

  In many model studies, dynamic similarity may also lead to incomplete similarity 

between the model and the prototype. If one or more of the similarity requirements 

are not met, e.g. in Eq. 6.2.9, if 2 2mΠ ≠ Π , then it follows that Eq. 6.2.12 will not be 

satisfied i.e. 1 1mΠ ≠ Π . It is a case of distorted model for which one or more of the 

similar requirements are not satisfied. For example, in the study of free surface flows, 

both Reynolds number Vlρ
µ

 
 
 

 and Froude number V
gl

 
  
 

 are involved. Then, 

Froude number similarity requires, 

m

m m

V V
g l gl

=                                                           (6.2.14) 

If the model and prototype are operated in the same gravitational field, then the 

velocity scale becomes,  

m m
l

V l
V l

λ= =                                                         (6.2.15) 
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Reynolds number similarity requires, 

. . . .m m m

m

V l V lρ ρ
µ µ

=                                                          (6.2.16) 

Then, the velocity scale is,  

. .m m

m m

V l
V l

µ ρ
µ ρ

=                                                          (6.2.17) 

Since, the velocity scale must be equal to the square root of the length scale, it follows 

that 

( )
( ) ( )

3
32
2m mm m

l
l
l

µ ρν λ
ν µ ρ

 = = = 
 

                                             (6.2.18) 

Eq. (6.2.18) requires that both model and prototype to have different kinematics 

viscosity scale. But practically, it is almost impossible to find a suitable fluid for the 

model, in small length scale. In such cases, the systems are designed on the basis of 

Froude number with different Reynolds number for the model and prototype where 

Eq. (6.2.18) need not be satisfied. Such analysis will result a “distorted model” and 

there are no general rules for handling distorted models, rather each problem must be 

considered on its own merits.  
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Chapter Five 

Flow i n pipes 
 

5.1. LAMINAR AND TURBULENT FLOWS 

The flow regime in the first case is said to be laminar, characterized by smooth 

streamlines and highly ordered motion, and turbulent in the second case, where it 

is characterized by velocity fluctuations and highly disordered motion. The 

transition from laminar to turbulent flow does not occur suddenly; rather, it occurs 

over some region in which the flow fluctuates between laminar and turbulent flows 

before it becomes fully turbulent. Most flows encountered in practice are turbulent. 

Laminar flow is encountered when highly viscous fluids such as oils flow in small 

pipes or narrow passages as shown in Figure 5.1. 

We can verify the existence of these laminar, transitional, and turbulent flow 

regimes by injecting some dye streaks into the flow in a glass pipe, as the British 

engineer Osborne Reynolds (1842–1912) did over a century ago. We observe that 

the dye streak forms a straight and smooth line at low velocities when the flow is 

laminar (we may see some blurring because of molecular diffusion), has bursts of 

fluctuations in the transitional regime, and zigzags rapidly and randomly when 

the flow becomes fully turbulent. These zigzags and the dispersion of the dye are 

indicative of the fluctuations in the main flow and the rapid mixing of fluid 

particles from adjacent layers.  

 

 

 

 

 

Figure 5.1: Spinning Reynolds’ sketches of pipe-

flow transition: (a) low-speed, laminar flow; (b) high-

speed, turbulent flow; (c) spark photograph of 

condition (b). 

(a) 

(b) 

(c) 
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5.2. Reynolds Number 

After exhaustive experiments in the 1880s, Osborne Reynolds discovered that the 

flow regime depends mainly on the ratio of inertial forces to viscous forces in the 

fluid. This ratio is called the Reynolds number and is expressed for internal flow in 

a circular pipe as,      

      

 

where Vavg= average flow velocity (m/s), D= characteristic length of the geometry 

(diameter in this case, in m), and υ= μ/ρ= kinematic viscosity of the fluid (m
2
/s). 

Note that the Reynolds number is a dimensionless quantity. Also, kinematic 

viscosity has the unit m
2
/s, and can be viewed as viscous diffusivity or diffusivity 

for momentum. 

The Reynolds number at which the flow becomes turbulent is called the critical 

Reynolds number, Recr. The value of the critical Reynolds number is different for 

different geometries and flow conditions. For internal flow in a circular pipe, the 

generally accepted value of the critical Reynolds number is Recr= 2300. 

For flow through noncircular pipes, the Reynolds number is based on the hydraulic 

diameter Dh defined as (Figure 5.2), 

Hydraulic diameter: 

 

where Ac is the cross-sectional area of the pipe and p is its wetted perimeter. The 

hydraulic diameter is defined such that it reduces to ordinary diameter D for 

circular  pipes, 

Circular pipes:  

 

Square duct: 

 

Rectangular duct:  

Figure 5.2 
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Under most practical conditions, the flow in a circular pipe is laminar for Re ≤ 

2300, turbulent for Re ≥ 4000, and transitional in between. That is, 

 

 

 

 

5.3. LAMINAR FLOW IN PIPES 

 

We mentioned in Section 5.2. that flow in pipes is laminar for Re ≤ 2300, and that 

the flow is fully developed if the pipe is sufficiently long (relative to the entry 

length) so that the entrance effects are negligible. 

In fully developed laminar flow, each fluid particle moves at a constant axial 

velocity along a streamline and the velocity profile u(r) remains unchanged in the 

flow direction. There is no motion in the radial direction, and thus the velocity 

component in the direction normal to flow is everywhere zero. There is no 

acceleration since the flow is steady and fully developed. 

Now consider a ring-shaped differential volume 

element of radius r, thickness dr, and length dx 

oriented coaxially with the pipe, as shown in 

Figure 5.3. The volume element involves only 

pressure and viscous effects and thus the pressure 

and shear forces must balance each other. The 

pressure force acting on a submerged plane 

surface is the product of the pressure at the 

centroid of the surface and the surface area. A 

force balance on the volume element in the flow 

direction gives Figure 5.3: Free-body diagram of a ring-shaped differential fluid element of radius 

r, thickness dr, and length dx oriented coaxially with a horizontal pipe in fully 

developed laminar flow. 
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which indicates that in fully developed flow in 

a horizontal pipe, the viscous and pressure 

forces balance each other. Dividing by 2πdrdx 

and rearranging, 

 

 

Taking the limit as dr, dx  0 gives        

 

 

Substituting τ= -μ(du/dr) and taking μ= 

constant gives the desired equation, 

 

 

 

 

The quantity du/dr is negative in pipe flow, and the negative sign is included to 

obtain positive values for t. (Or, du/dr = - du/dy since y= R - r.) The left side of 

above Equation is a function of r, and the right side is a function of x. The equality 

must hold for any value of r and x, and an equality of the form f (r) = g(x) can be 

satisfied only if both f (r) and g(x) are equal to the same constant. Thus we 

conclude that dP/dx = constant. This can be verified by writing a force balance on 

a volume element of radius R and thickness dx (a slice of the pipe), which gives 
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Here τw is constant since the viscosity and the velocity profile are constants in the 

fully developed region. Therefore, dP/dx= constant. 

by rearranging and integrating it twice to give 

 

 

The velocity profile u(r) is obtained by applying the boundary conditions ∂u/∂r = 0 

at r = 0 (because of symmetry about the centerline) and u = 0 at r = R (the no-slip 

condition at the pipe surface). We get 

 

 

 

Therefore, the velocity profile in fully developed laminar flow in a pipe is 

parabolic with a maximum at the centerline and minimum (zero) at the pipe wall. 

Also, the axial velocity u is positive for any r, and thus the axial pressure gradient 

dP/dx must be negative (i.e., pressure must decrease in the flow direction because 

of viscous effects). 

 

 

 

Combining the last two equations, the velocity profile is rewritten as 

 

      

This is a convenient form for the velocity profile since Vavg can be determined 

easily from the flow rate information. The maximum velocity occurs at the 

centerline and is determined from the velocity profile equation (equation above) by 

substituting r = 0, 

      Therefore, the average velocity in fully developed laminar pipe flow 

is one half of the maximum velocity. 
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5.4. Pressure Drop and Head Loss 

A quantity of interest in the analysis of pipe flow is the pressure drop (P since it is 

directly related to the power requirements of the fan or pump to maintain flow. We 

note that dP/dx= constant, and integrating from x= x1 where the pressure is P1 to 

x= x1 + L where the pressure is P2 gives 

     

 

Substituting above equation into the Vavg expression, the pressure drop can be 

expressed as, 

Laminar flow:      

 

In fluid flow, ∆P is used to designate pressure drop, and thus it is P1 & P2. A 

pressure drop due to viscous effects represents an irreversible pressure loss, and it 

is called pressure loss ∆PL to emphasize that it is a loss (just like the head loss hL, 

which is proportional to it). Therefore, the drop of pressure from P1 to P2 in this 

case is due entirely to viscous effects, and above equation represents the pressure 

loss ∆PL when a fluid of viscosity m flows through a pipe of constant diameter D 

and length L at average velocity Vavg. 

In practice, it is found convenient to express the pressure loss for all types of fully 

developed internal flows (laminar or turbulent flows, circular or noncircular pipes, 

smooth or rough surfaces, horizontal or inclined pipes).  

 

Pressure loss:   

where ρV
2

 avg/2 is the dynamic pressure  

 

 f is the Darcy friction factor, 

 

It is also called the Darcy–Weisbach friction factor,  
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It should not be confused with the friction coefficient Cf [also called the Fanning 

friction factor] which is defined as Cf = 2τw/(rV
2

avg)= f /4. 

Solving for f gives the friction factor for fully developed laminar flow in a circular 

pipe, 

 

Circular pipe, laminar:     

 

 

This equation shows that in laminar flow, the friction factor is a function of the 

Reynolds number only and is independent of the roughness of the pipe surface. 

 

Head loss:     

 

Once the pressure loss (or head loss) is known, the required pumping power to 

overcome the pressure loss is determined from 

     

 

where V is the volume flow rate and ṁ is the mass flow rate. 

Example:  

Water properties (ρ= 62.42 lbm/ft
3
 and μ=1.038×10

-3
 lbm/ft .s) is flowing through 

a 0.12 in (= 0.010 ft) diameter 30 ft long horizontal pipe steadily at an average 

velocity of 3.0 ft/s (see Figure 5.4). Determine (a) the head loss, (b) the pressure 

drop, and (c) the pumping power requirement to overcome this pressure drop. 

Solution: 

      

 

 

 

(a) First we need to determine the flow regime. The Reynolds number is 

Figure 5.4: Schematic for above Example. 
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which is less than 2300. Therefore, the flow is laminar. Then the friction factor and 

the head loss become     

       

 

 

 

(b) Noting that the pipe is horizontal and its diameter is constant, the pressure drop 

in the pipe is due entirely to the frictional losses and is equivalent to the pressure 

loss, 

     

 

 

(c) The volume flow rate and the pumping power requirements are 

 

 

 

 

Example: 

An oil with ρ= 900 kg/m
3
 and υ= 0.0002 m

2
/s flows upward through an inclined 

pipe as shown in Figure below. The pressure and elevation are known at sections 1 

and 2, 10 m apart. Assuming steady laminar flow, (a) verify that the flow is up, (b) 

compute hf between 1 and 2, and compute (c) volume flow rate, (d) Velocity, and 

(e) Reynolds number. Is the flow really laminar? 
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Solution:      
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This is well below the transition value Re= 2300, and so we are fairly certain the 

flow is laminar. 


